We perform electron irradiation during the radio-frequency (RF) sputtering process to realize the growth of a transparent oxide thin film, indium tin oxide (ITO), to achieve a high transparency and a low resistivity. Using an electron gun attached to the sputtering system, we simultaneously accelerate a large number of electrons onto the substrate along with the sputtered ITO atoms by using a negative bias of up to 1.5 kV. As the electron-beam voltage increased, the preferred orientation of the ITO film changed from the (222) plane to the (400) plane, and the film showed a flake-type surface morphology. Sputtered ITO atoms in the electron-assisted sputtering (EAS) process showed sufficient mobility because of the kinetic effect of continuous electron irradiation without the need for an additional substrate heating process. The ITO films grown using the EAS process had a minimum resistivity value of 1.46×10−4 Ωcm under an electron irradiation condition of 1.5 kV and showed a transmittance of 95% at 550 nm.
Read full abstract