This article proposes and experimentally characterizes two implementations of a novel front-end circuit for three-wire connected resistive sensors with a wire-resistance compensation. The first implementation relies on two twin diodes, whereas the second on a switch; in both cases, those devices are non-remote (i.e., they are placed at the circuit end). The two circuit proposals have a square-wave input excitation so that a constant current with the two polarities is alternatively generated. Then, depending on that polarity, the current goes through either the sensor and the wire parasitic resistances or just the parasitic resistances. This generates a square-wave bipolar output signal whose average value, which is obtained by a low-pass filter, is proportional to the sensor resistance and only depends on the mismatch between two of the three wire resistances involved. Experimental tests applied to resistances related to a Pt100 thermal sensor show a remarkable linearity. For example, the switch-based front-end circuit offers a non-linearity error lower than 0.01% full-scale span, and this is practically insensitive to both the presence and the mismatch between the wire resistances.
Read full abstract