With the deployment of vehicle-to-everything(V2X) communication technology, Denial-of-Service(DoS) attacks gradually pose potential threats for the truck platooning cyber–physical systems(TPCPS) due to disruption of information exchange in vehicular networks, resulting in instability of truck platooning and even traffic accidents. Motivated by this, the study proposes a resilient event-triggered control strategy to maintain the performance or stability of the TPCPS when DoS attacks happen. First, a resilient event-triggered mechanism is proposed to ensure that the onboard controller can receive and update status information in time after attack intervals, mitigating effect of the vehicle-to-vehicle(V2V) communication disruptions. Subsequently, the sufficient condition is derived which is to confine DoS attacks and makes a key role in maintaining the platoon’s internal stability. To guarantee the consensus control performance of the TPCPS, the switched event-triggered controller is designed by the Lyapunov approach. The controller is expected to output corresponding control based on the updated status information in communication interval. Ultimately, the proposed strategy’s effectiveness is validated through simulations. The proposed resilient event-triggered control strategy is shown to be able to effectively mitigate abnormalities in the TPCPS under DoS attacks, thus ensuring safe and comfortable driving. Compared with event-triggered sliding mode control, the proposed method achieves smaller inter-vehicle distances while ensuring stability, enhancing traffic efficiency.
Read full abstract