<p style='text-indent:20px;'>Cyclotomy, firstly introduced by Gauss, is an important topic in Mathematics since it has a number of applications in number theory, combinatorics, coding theory and cryptography. Depending on <inline-formula><tex-math id="M2">\begin{document}$ v $\end{document}</tex-math></inline-formula> prime or composite, cyclotomy on a residue class ring <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb{Z}}_{v} $\end{document}</tex-math></inline-formula> can be divided into classical cyclotomy or generalized cyclotomy. Inspired by a foregoing work of Zeng et al. [<xref ref-type="bibr" rid="b40">40</xref>], we introduce a generalized cyclotomy of order <inline-formula><tex-math id="M4">\begin{document}$ e $\end{document}</tex-math></inline-formula> on the ring <inline-formula><tex-math id="M5">\begin{document}$ {\rm GF}(q_1)\times {\rm GF}(q_2)\times \cdots \times {\rm GF}(q_k) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ q_i $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ q_j $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M8">\begin{document}$ i\neq j $\end{document}</tex-math></inline-formula>) may not be co-prime, which includes classical cyclotomy as a special case. Here, <inline-formula><tex-math id="M9">\begin{document}$ q_1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ q_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ \cdots $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ q_k $\end{document}</tex-math></inline-formula> are powers of primes with an integer <inline-formula><tex-math id="M13">\begin{document}$ e|(q_i-1) $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M14">\begin{document}$ 1\leq i\leq k $\end{document}</tex-math></inline-formula>. Then we obtain some basic properties of the corresponding generalized cyclotomic numbers. Furthermore, we propose three classes of partitioned difference families by means of the generalized cyclotomy above and <inline-formula><tex-math id="M15">\begin{document}$ d $\end{document}</tex-math></inline-formula>-form functions with difference balanced property. Afterwards, three families of optimal constant composition codes from these partitioned difference families are obtained, and their parameters are also summarized.</p>
Read full abstract