We investigated the residual rate and mass loss rate of litter, as well as the carbon release dynamics of litter and soil across seasons, to better understand the effects of seasonal fluctuations on carbon dynamics in mixed coniferous forests. The study was carried out in natural mixed coniferous forests in the Xiaoxinganling region of Heilongjiang Province, China, and the number of temperature cycles in the unfrozen season, freeze-thaw season, frozen season, and thaw season was controlled. The goal of the study was to examine how the carbon release dynamics of litter and soil respond to the freeze-thaw process and whether there are differences in carbon release dynamics under different seasons. Repeated-measures analysis of variance was used to analyze the residual mass rate and mass loss rate of litter, litter organic carbon and soil organic carbon during the unfrozen season, freeze-thaw season, frozen season, and thaw season. Litter decomposition was highest in the unfrozen season (15.9%~20.3%), and litter and soil carbon were sequestered throughout this process. Temperature swings above and below 0°C during the freeze-thaw season cause the litter to physically fragment and hasten its decomposition. Decomposition of litter was still feasible during the frozen season, and it was at its lowest during the thaw season (7.2%~7.8%), when its organic carbon was transported to the soil. Carbon migrates from undecomposed litter to semi-decomposed litter and then to soil. The carbon in the environment is fixed in the litter (11.3%~18.2%) and soil (34.4%~36.7%) in the unfrozen season, the carbon-fixing ability of the undecomposed litter in the freeze-thaw season is better, and the carbon in the semi-decomposed litter is mostly transferred to the soil; the carbon-fixing ability of the litter in the frozen season is worse (-3.9%~ -4.3%), and the organic carbon in the litter is gradually transferred to the soil. The carbon-fixing ability of the undecomposed litter in the thaw season is stronger, and the organic carbon in the semi-decomposed litter is mostly transferred to the soil. Both litter and soil can store carbon; however, from the unfrozen season until the thaw season, carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.
Read full abstract