BackgroundConcentrated animal feeding operations (CAFOs) are a source of environmental pollution and have been associated with a variety of health outcomes. Immune-mediated diseases (IMD) are characterized by dysregulation of the normal immune response and, while they may be affected by gene and environmental factors, their association with living in proximity to a CAFO is unknown. ObjectivesWe explored gene, environment, and gene-environment (GxE) relationships between IMD, CAFOs, and single nucleotide polymorphisms (SNPs) of prototypical xenobiotic response genes AHR, ARNT, and AHRR and prototypical immune response gene PTPN22. MethodsThe exposure analysis cohort consisted of 6,464 participants who completed the Personalized Environment and Genes Study Health and Exposure Survey and a subset of 1,541 participants who were genotyped. We assessed the association between participants’ residential proximity to a CAFO in gene, environment, and GxE models. We recombined individual associations in a transethnic model using METAL meta-analysis. ResultsIn White participants, ARNT SNP rs11204735 was associated with autoimmune diseases and rheumatoid arthritis (RA), and ARNT SNP rs1889740 was associated with RA. In a transethnic genetic analysis, ARNT SNPs rs11204735 and rs1889740 and PTPN22 SNP rs2476601 were associated with autoimmune diseases and RA. In participants living closer than one mile to a CAFO, the log-distance to a CAFO was associated with autoimmune diseases and RA. In a GxE interaction model, White participants with ARNT SNPs rs11204735 and rs1889740 living closer than eight miles to a CAFO had increased odds of RA and autoimmune diseases, respectively. The transethnic model revealed similar GxE interactions. ConclusionsOur results suggest increased risk of autoimmune diseases and RA in those living in proximity to a CAFO and a potential role of the AHR-ARNT pathway in conferring risk. We also report the first association of ARNT SNPs rs11204735 and rs1889740 with RA. Our findings, if confirmed, could allow for novel genetically-targeted or other preventive approaches for certain IMD.