US home care (HC) aide visits to clients' homes typically involve cleaning and disinfecting (C&D) environmental surfaces, particularly in bathrooms. Some ingredients in C&D products are associated with respiratory illness: sodium hypochlorite (bleach), quaternary ammonium compounds (QACs), and volatile organic compounds (VOCs). This study assessed and compared aides' respiratory exposures to specific VOCs and QACs while using 2 conventional and 1 "green" household C&D spray products during bathroom cleaning. Measured exposures were compared to ingredients listed on publicly available sources. Three C&D products were selected with principal active disinfecting ingredients: 1% to 5% sodium hypochlorite by weight ("bleach-based"); 0.1% to 1% QACs ("QACs-based"); and 0.05% thymol ("green"). Twenty-two aides were recruited to perform C&D tasks in a simulated residential bathroom constructed in an environmental monitoring laboratory. A balanced experimental study design involved each aide visiting the lab 4 times to perform typical cleaning tasks with the 3 products and distilled water (as a control), randomly assigned across the 4 visits. Aides wore air sampling equipment for breathing zone samples: canisters to collect whole air for VOC analyses and filter cassettes for QACs analyses. Aides performed 84 cleaning visits contributing approximately 20 air samples each for VOCs and QACs, for each of the 3 products and distilled water. In total, 38 unique VOCs were identified in the canister whole air samples: 20 in the QACs-based product samples, 15 in the bleach-based, and 10 in the green. Most VOCs were not listed in publicly available sources of cleaning product ingredients. Toxicity information was limited. Few VOCs had occupational exposure limits. The QACs-based product generated QACs aerosol: benzalkonium chloride (BAC)12 (geometric mean (GM) = 6.98 µg/m3), BAC14 (GM=2.97 µg/m3), BAC16 (GM=0.78 µg/m3); and the 3 QACs summed (GM=10.86 µg/m3). The use of C&D spray products for residential cleaning can generate respiratory exposures to complex mixtures of volatile and nonvolatile compounds. Notably, we measured aerosols containing QACs during the use of the QACs-based product. Dermal is usually considered the main route of exposure because QACs are nonvolatile salts. This study provides evidence that QACs inhalation exposure should be recognized and minimized in addition to the well-accepted dermal exposure routes. The green product generated the fewest VOCs. However, more toxicity information is needed on the health impacts of green C&D products. Spraying of C&D products, conventional and green, should be avoided. Aides' respiratory health should be protected from chemical exposures while performing C&D in home care.
Read full abstract