Arguments over the appropriate Crisis Standards of Care (CSC) for public health emergencies often assume that there is a tradeoff between saving the most lives, saving the most life-years, and preventing racial disparities. However, these assumptions have rarely been explored empirically. To quantitatively characterize possible ethical tradeoffs, we aimed to simulate the implementation of five proposed CSC protocols for rationing ventilators in the context of the COVID-19 pandemic. A Monte Carlo simulation was used to estimate the number of lives saved and life-years saved by implementing clinical acuity-, comorbidity- and age-based CSC protocols under different shortage conditions. This model was populated with patient data from 3707 adult admissions requiring ventilator support in a New York hospital system between April 2020 and May 2021. To estimate lives and life-years saved by each protocol, we determined survival to discharge and estimated remaining life expectancy for each admission. The simulation demonstrated stronger performance for age-sensitive protocols. For a capacity of 1 bed per 2 patients, ranking by age bands saves approximately 29 lives and 3400 life-years per thousand patients. Proposed protocols from New York and Maryland which allocated without considering age saved the fewest lives (~13.2 and 8.5 lives) and life-years (~416 and 420 years). Unlike other protocols, the New York and Maryland algorithms did not generate significant disparities in lives saved and life-years saved between White non-Hispanic, Black non-Hispanic, and Hispanic sub-populations. For all protocols, we observed a positive correlation between lives saved and life-years saved, but also between lives saved overall and inequality in the number of lives saved in different race and ethnicity sub-populations. While there is significant variance in the number of lives saved and life-years saved, we did not find a tradeoff between saving the most lives and saving the most life-years. Moreover, concerns about racial discrimination in triage protocols require thinking carefully about the tradeoff between enforcing equality of survival rates and maximizing the lives saved in each sub-population.