This paper deals with the attraction–repulsion chemotaxis system with nonlinear productions and logistic source, ut=∇⋅(D(u)∇u)−∇⋅(Φ(u)∇v)+∇⋅(Ψ(u)∇w)+f(u),vt=Δv+αuk−βv,τwt=Δw+γul−δw,τ∈{0,1},\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $$\\begin{aligned}& u_{t} = \ abla \\cdot \\bigl( D(u) \ abla u \\bigr) - \ abla \\cdot \\bigl( \\Phi (u) \ abla v \\bigr) + \ abla \\cdot \\bigl( \\Psi (u) \ abla w \\bigr) + f(u),\\\\& v_{t} = \\Delta v+\\alpha {{u}^{k}}-\\beta v,\\qquad \ au w_{t} = \\Delta w+\\gamma {{u}^{l}}-\\delta w,\\quad \ au \\in \\{0,1 \\}, \\end{aligned}$$ \\end{document} in a bounded domain Ω⊂Rn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Omega \\subset {{\\mathbb{R}}^{n}}$\\end{document} (n≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$n \\ge 1 $\\end{document}), subject to the homogeneous Neumann boundary conditions and initial conditions, where D,Φ,Ψ∈C2[0,∞)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$D,\\Phi ,\\Psi \\in {{C}^{2}}[0,\\infty )$\\end{document} are nonnegative with D(s)≥(s+1)p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$D(s)\\ge {{(s+1)}^{p}}$\\end{document} for s≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$s\\ge 0$\\end{document}, Φ(s)≤χsq\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Phi (s)\\le \\chi {{s}^{q}}$\\end{document}, ξsg≤Ψ(s)≤ζsj\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\xi {{s}^{g}}\\le \\Psi (s) \\le \\zeta s^{j}$\\end{document}, s≥s0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$s\\ge {{s}_{0}}$\\end{document}, for s0>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${{s}_{0}}>1$\\end{document}, the logistic source satisfies f(s)≤s(a−bsd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$f(s)\\le s(a-b{{s}^{d}})$\\end{document}, s>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$s>0$\\end{document}, f(0)≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$f(0)\\ge 0$\\end{document}, and the nonlinear productions for the attraction and repulsion chemicals are described via αuk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\alpha {{u}^{k}}$\\end{document} and γul\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\gamma {{u}^{l}}$\\end{document}, respectively. When k=l=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$k=l=1$\\end{document}, it is known that this system possesses a globally bounded solution in some cases. However, there has been no work in the case k,l>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$k,l>0$\\end{document}. This paper develops the global boundedness of the solution to the system in some cases and extends the global boundedness criteria established by Tian, He, and Zheng (2016) for the attraction–repulsion chemotaxis system.
Read full abstract