Glitter is a type of microplastic, and thus there is a need to assess its potential impacts on the environment and to assess the potential for non-plastic cellulose nanocrystal structurally colored glitters as safe and sustainable replacements. The ecotoxicity of glitter has been mostly ignored in the research literature, with only a few published studies focusing on aquatic organisms. Therefore, an exposure experiment was conducted to examine the impact of conventional polyethylene terephthalate (PET) glitter as well as untreated and heat-treated cellulose nanocrystal (CNC) based glitter on the survival, reproduction, and length of Folsomia candida (springtail). Folsomia candida reproduction was reduced by 61% (P = 0.013) after exposure to PET glitter at 1000 mg/kg, while no significant effects were observed on F. candida survival and length. In contrast, there were no significant impacts on F. candida survival, length, or reproduction when exposed to untreated or heat-treated CNC glitter. These results indicate that exposure to PET glitter may impact soil invertebrates at the population level, and that CNC glitter has potential as a biodegradable non-plastic alternative to PET glitter to decrease detrimental effects on soil ecosystems.
Read full abstract