In this paper, a Lie-group integrator based on $$GL_4(\mathbb {R})$$ and the reproducing kernel functions has been constructed to investigate the flow characteristics in an electrically conducting second-grade fluid over a stretching sheet. Accurate initial values can be achieved when the target equation is matched precisely, and then, we can apply the group preserving scheme (GPS) to get a rather accurate results. On the other hand, the reproducing kernel method (RKM) is successfully applied to the underlying equation with convergence analysis. We show exact and approximate solutions by series in the reproducing kernel space. We use a bounded linear operator in the reproducing kernel space to get the solutions by the reproducing kernel method. Comparison of these two methods demonstrates the power and reliability. Finally, effects of magnetic parameter, viscoelastic parameter, stagnation-point flow, and stretching of the sheet parameters are illustrated.
Read full abstract