ObjectivePMMA bone cement leads to the development of local thrombi. Our study found that ES-PMMA bone cement, a novel material, can reduce local thrombosis. We used a simple and reproducible animal model to confirm the reduction in local thrombosis and preliminarily explored the associated molecular mechanism.MethodsNew Zealand rabbits, which were used to model thrombosis using extracorporeal carotid artery shunts, were divided into the following three groups, with 10 rabbits in each group: the sham group, PMMA group and ES-PMMA group. Four hours after modelling, experimental samples were collected, and the degree of thrombosis was compared between the groups. The expression of thrombomodulin in endothelial cells was quantified in vascular tissues samples.ResultsThrombosis was observed in the PMMA group and ES-PMMA group but not in the sham group. The thrombosis weight was 0.00732 ± 0.00089 g/cm in the PMMA group and 0.00554 ± 0.00077 g/cm in the ES-PMMA group (P < 0.001). Quantitative real-time polymerase chain reaction (RT–qPCR) and Western blotting revealed that the expression of CD40, which can regulate thrombosis in vascular endothelial cells, was significantly lower in the ES-PMMA group than in the PMMA group.ConclusionCompared with PMMA bone cement, ES-PMMA bone cement can reduce local thrombosis by decreasing the expression of the thrombus-associated regulatory protein CD40 in vascular endothelial cells.