The focus of this study is exploring a scale-span characterization method to predict the mechanical properties of Braided Carbon Fiber Reinforced Poly Ether Ether Ketone (BCF/PEEK) considering structural uncertainty. Firstly, a complicated micro-scale Representative Volume Element (RVE) model that considers the random position and size of fiber was established via the developed Python script. Analogously, a mathematical expression adopted by the trust region algorithm was proposed to accurately describe the detailed cross-sectional shapes and fluctuation amplitude characteristics of BCF/PEEK for the sake of establishing the precision meso-scale RVE model. Then, the corresponding elastic properties that consider fiber volume fraction and fiber distribution location were characterized via the span-scale characterization method. Meanwhile, the influence of fiber bundle fluctuation amplitude and fiber volume fraction on the mechanical properties was investigated as well. In addition, the mechanical properties of BCF/PEEK with the change of the braid angle between warp and weft yarn were predicted via the established meso-scale RVE model. Finally, a series of experiments have been carried out. The maximum and minimum absolute prediction deviation of all elastic property parameters were only 4.07 % and 1.41 %, respectively, which verified the proposed scale-span characterization method can predict the mechanical properties of composites well.