This paper is mainly dedicated to an extension of the Slepian-Bangs formula to non-circular complex elliptical symmetric (NC-CES) distributions, which is derived from a new stochastic representation theorem. This formula includes the non-circular complex Gaussian and the circular CES (CCES) distributions. Some general relations between the Cramer Rao bound (CRB) under CES and Gaussian distributions are deduced. It is proved in particular that the Gaussian distribution does not always lead to the largest stochastic CRB (SCRB) as many authors tend to believe it. Finally a particular attention is paid to the noisy mixture where closedform expressions for the SCRBs of the parameters of interest are derived.