The concept of interval-valued intuitionistic fuzzy sets is intellectually stimulating and holds significant utility in the representation and analysis of real-world problems. The development of similarity measures within the class of interval-valued intuitionistic fuzzy sets possesses significant importance across various academic disciplines, particularly in the fields of decision-making and pattern recognition. The utilization of similarity measures is of utmost importance in the decision-making process when implementing interval-valued intuitionistic fuzzy sets. This is due to its inherent capability to quantitatively assess the level of resemblance or similarity between two interval-valued intuitionistic fuzzy sets. In this article, the drawbacks of the existing similarity measures in the context of an interval-valued intuitionistic fuzzy environment are addressed, and a novel similarity measure is presented. Many fundamental properties of this new interval-valued intuitionistic fuzzy similarity measure are also established, and the effectiveness of this similarity measure is illustrated by presenting a useful example. Moreover, a comparison is given to demonstrate the validity of the newly proposed similarity measure within the existing knowledge of similarity measures in the interval-valued intuitionistic fuzzy environment. In addition, an algorithm is designed to solve multi-criteria decision making problems by means of the proposed measure in the interval-valued intuitionistic fuzzy setting. Furthermore, this newly defined similarity measure is successfully applied to select an optimal renewable energy source to reduce energy crises. Finally, we conduct a comparative study to showcase the authenticity of the recently defined technique within the existing knowledge of similarity measures in the interval-valued intuitionistic fuzzy environment.
Read full abstract