In the dynamic field of gene therapy, recombinant adeno-associated viruses (rAAVs) have become leading viral vectors due to their safety, long-term expression, and wide-ranging cell and tissue tropism. With numerous FDA approvals and commercial products underscoring their potential, there is a critical need for efficient production processes to achieve high vector titers and quality. A major challenge in rAAV production is the efficient packaging of the genome into the viral capsid, with empty or partially filled capsids often representing over 90% of the produced material. To tackle this issue, we engineered the replication and packaging proteins of an AAV (Rep) to boost their functionality and improve vector titers. We subjected a complex Rep library derived from the AAV serotypes 1–13 to directed evolution in an AAV producer cell line. After each round of selection, single clones were analyzed, showing enrichment of specific hybrid Rep domains. Comparative analysis of these selected clones revealed considerable differences in their ability to package AAV2-based viral genomes, with hybrid Rep proteins achieving up to a 2.5-fold increase in packaging efficiency compared to their parental counterparts. These results suggest that optimizing rep gene variants through directed evolution is an effective strategy to enhance rAAV production efficiency.
Read full abstract