Due to the lack of available episomal plasmid, the improvement of many industrial strains, especially exogenous gene expression, is severely restricted. The failure of autonomous replication or low copy number of episomal plasmids is the main reason for the failure of many episomal plasmids construction. In this paper, Candida glycerinogenes, an industrial strain lacking episomal plasmids, was employed as the topic. A series of GFP-based plasmids containing autonomously replicating sequence (ARS) from different strain sources were constructed and analyzed for performance, and it was found that only the panARS from Kluyveromyces lactis compared with other nine low capacity ARSs proved to have the best performance and could be used to construct episomal plasmid. Further, the dual-ARS strategy was used to optimize the episomal plasmid, and the results indicated that only the dual-ARS plasmid+PPARS2 with double different ARSs, not the dual-ARS plasmid+panARS with double same ARSs, showed an improvement in all properties, with an increase in transformation efficiency of about 36% and a synchronous trend of fluorescence intensity and copy number, both by about 40%. In addition, constructed episomal plasmids were used to express the exogenous gene CrGES, and the fact that geraniol was found proved the versatility of the plasmids. The successful construction of episomal plasmids will also substantially facilitate genetic engineering research and industrial use of C.glycerinogenes in the future, as well as providing a feasible approach to create episomal plasmids for industrial strains.
Read full abstract