Alkyl phosphotriester (alkyl-PTE) lesions in DNA are shown to be poorly repaired; however, little is known about how these lesions impact DNA replication in human cells. Here, we investigated how the SP and RP diastereomers of four alkyl-PTE lesions (alkyl = Me, Et, nPr, or nBu) at the TT site perturb DNA replication in HEK293T cells. We found that these lesions moderately impede DNA replication and that their replicative bypass is accurate. Moreover, CRISPR-Cas9-mediated depletion of Pol η or Pol ζ resulted in significantly attenuated bypass efficiencies for both diastereomers of nPr- and nBu-PTE adducts, and the SP diastereomer of Et-PTE. Diminished bypass efficiencies were also detected for the Rp diastereomer of nPr- and nBu-PTE lesions upon ablation of Pol κ. Together, our study uncovered the impact of the alkyl-PTE lesions on DNA replication in human cells and revealed the roles of individual translesion synthesis DNA polymerases in bypassing these lesions.
Read full abstract