Abstract
Translesion synthesis (TLS) DNA polymerase Polζ is crucial for the bypass replication over sites of DNA damage. The Rev7 subunit of Polζ is a HORMA (Hop1, Rev7, Mad2) protein that facilitates recruitment of Polζ to the replication fork via interactions with the catalytic subunit Rev3 and the translesion synthesis scaffold protein Rev1. Human Rev7 (hRev7) interacts with two Rev7-binding motifs (RBMs) of hRev3 by a mechanism conserved among HORMA proteins whereby the safety-belt loop of hRev7 closes on the top of the ligand. The two copies of hRev7 tethered by the two hRev3-RBMs form a symmetric head-to-head dimer through the canonical HORMA dimerization interface. Recent cryo-EM structures reveal that Saccharomyces cerevisiae Polζ (scPolζ) also includes two copies of scRev7 bound to distinct regions of scRev3. Surprisingly, the HORMA dimerization interface is not conserved in scRev7, with the two scRev7 protomers forming an asymmetric head-to-tail dimer with a much smaller interface than the hRev7 dimer. Here, we validated the two adjacent RBM motifs in scRev3, which bind scRev7 with affinities that differ by two orders of magnitude and confirmed the 2:1 stoichiometry of the scRev7:Rev3 complex in solution. However, our biophysical studies reveal that scRev7 does not form dimers in solution either on its own accord or when tethered by the two RBMs in scRev3. These findings imply that the scRev7 dimer observed in the cryo-EM structures is induced by scRev7 interactions with other Polζ subunits and that Rev7 homodimerization via the HORMA interface is a mechanism that emerged later in evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.