Under the influence of the sedimentation process, the phenomenon of intraformational non-homogeneity is widely observed in low-permeability reservoirs. In the development process of water and gas replacement (WAG), the transport law of water and gas and the distribution of residual oil are seriously affected by the non-homogeneity of reservoir properties. In this paper, a study on two types of reservoirs with certain lengths and thicknesses is carried out, and a reasonable development method is proposed according to the characteristics of each reservoir. Firstly, through indoor physical simulation experiments combined with low-field nuclear magnetic resonance scanning (NMR), this study investigates the influence of injection rate and core length on the double-layer low-permeability inhomogeneous core replacement and pore throat mobilization characteristics. Then, a two-layer inhomogeneous low-permeability microscopic model is designed to investigate the model’s replacement and pore throat mobilization characteristics under the combined influence of rhythmites, gravity, the injection rate, etc. Finally, based on the results of the core replacement and numerical simulation, a more reasonable development method is proposed for each type of reservoir. The results show that for inhomogeneous cores of a certain length, the WAG process can significantly increase the injection pressure and effectively seal the high-permeability layer through the Jamin effect to improve the degree of recovery. Moreover, for positive and reverse rhythm reservoirs of a certain thickness, the injection rate can be reduced according to the physical properties of the reservoir, and the gravity overburden phenomenon of the gas is used to achieve the effective development of the upper layers. The effect of the development of a positive rhythm reservoir therefore improved significantly. These findings provide data support for improving the development effectiveness of CO2 in low-permeability inhomogeneous reservoirs and emphasize the importance of the influence of multiple factors, such as injection flow rate, gravity, and rhythm, in CO2 replacement.
Read full abstract