Abstract
Compositional and anatomical studies of silicified wood have been carried out extensively all around the world. The classification of silicified wood as such deals with all the forms and phases of silica that come under its umbrella. One such class of silicified wood is fossil wood with a high content of quartz, and there are very limited mentions of this category of fossilized wood. The examined wood belongs to gymnosperm and comes from the Upper Triassic deposits of Madagascar. A fresh approach to such samples is adopted by studying the crystallographic texture of the fossil wood to understand the orientation of the crystals replacing the organic matter within the sample. This work focuses on crystallographic texture analysis based on pole figures measured by X-ray diffraction. The intensity of the pole density maxima on the pole figures measured on the heartwood surface part of the analyzed samples is higher than that on the sapwood. This affirms that the crystallographic texture is sharper at the heartwood part compared to the sapwood. The X-ray tomography study, conducted to understand the difference in mineral distribution within the sample, reveals a greater X-ray absorbing phase on the sapwood of both samples. This is due to the concentration of iron compounds, which both replace the remaining conductive structures of the wood and fill the cavities inside them. We believe that this research on silicified wood is the first research work that encompasses crystallographic texture analysis with pole figures, an approach not previously undertaken in similar studies. We hope that our research can be useful in understanding the processes of replacement of organic matter by minerals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.