Use-dependent learning has been investigated to some extent, although how motor patterns obtained through use-dependent learning are generalized across different movement conditions remains to be further understood. Here, we investigate the generalizability of use-dependent learning by determining how visuomotor adaptation associated with use-dependent learning was generalized across different workspaces and limb postures. In our experiments, participants first adapted to a visuomotor rotation while reaching from a given starting position toward a training target in a given limb posture. They concurrently experienced repetitive passive movements from varying starting positions (Exp. 1) or in varying limb postures (Exp. 2). Following that, they adapted to the same rotation while reaching from the original start circle to a transfer target. Regardless of the workspaces or limb postures experienced, passive training facilitated visuomotor adaptation in the transfer session, indicating that visuomotor adaptation can generalize across different movement conditions. However, the extent of generalization decreased as the experienced workspaces or limb postures deviated from the original condition experienced. Our findings indicate that use-dependent learning results in motor instances that are workspace and limb-posture specific, although they are still useful for enhancing the generalization of motor learning across varying conditions.