To fabricate an industrial and highly efficient super-hydrophobic brass surface, annealed H59 brass samples have here been textured by using a 1064 nm wavelength nanosecond fiber laser. The effects of different laser parameters (such as laser fluence, scanning speed, and repetition frequency), on the translation to super-hydrophobic surfaces, have been of special interest to study. As a result of these studies, hydrophobic properties, with larger water contact angles (WCA), were observed to appear faster than for samples that had not been heat-treated (after an evolution time of 4 days). This wettability transition, as well as the evolution of surface texture and nanograins, were caused by thermal annealing treatments, in combination with laser texturing. At first, the H59 brass samples were annealed in a Muffle furnace at temperatures of 350 °C, 600 °C, and 800 °C. As a result of these treatments, there were rapid formations of coarse surface morphologies, containing particles of both micro/nano-level dimensions, as well as enlarged distances between the laser-induced grooves. A large number of nanograins were formed on the brass metal surfaces, onto which an increased number of exceedingly small nanoparticles were attached. This combination of fine nanoparticles, with a scattered distribution of nanograins, created a hierarchic Lotus leaf-like morphology containing both micro-and nanostructured material (i.e., micro/nanostructured material). Furthermore, the distances between the nano-clusters and the size of nano-grains were observed, analyzed, and strongly coupled to the wettability transition time. Hence, the formation and evolution of functional groups on the brass surfaces were influenced by the micro/nanostructure formations on the surfaces. As a direct consequence, the surface energies became reduced, which affected the speed of the wettability transition—which became enhanced. The micro/nanostructures on the H59 brass surfaces were analyzed by using Field Emission Scanning Electron Microscopy (FESEM). The chemical compositions of these surfaces were characterized by using an Energy Dispersive Analysis System (EDS). In addition to the wettability, the surface energy was thereby analyzed with respect to the different surface micro/nanostructures as well as to the roughness characteristics. This study has provided a facile method (with an experimental proof thereof) by which it is possible to construct textured H59 brass surfaces with tunable wetting behaviors. It is also expected that these results will effectively extend the industrial applications of brass material.
Read full abstract