In this paper, a novel signal-space diversity (SSD) technique based multipoint-to-multipoint cooperative scheme for a multiuser free-space optical communication system is proposed. In SSD technique, constellation points of the transmitted signal are rotated by a certain angle and in-phase and quadrature components of two different symbols are interleaved to obtain diversity from the signal space. In the proposed scheme, the diversity of each cooperative user gets improved through joint encoding/decoding of the rotated symbols using subcarrier intensity modulation (SIM). The joint encoding/decoding can be done by connecting all the users' transceivers by wires that ensure the availability of the information of a user to all other users. The average symbol error rate for the proposed scheme under log-normal and gamma-gamma channel models is evaluated analytically and corroborated through Monte Carlo simulations. It is reported through intensive analyses and comparisons that the proposed cooperative scheme not only achieves full diversity order but also outperforms non-cooperative and repetition coding schemes.