Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.