We propose new repair schemes for Reed-Solomon codes that use subspace polynomials and hence generalize previous works in the literature that employ trace polynomials. The Reed-Solomon codes are over \mathbb F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q<sup><i>l</i></sup></sub> and have redundancy r = n-k ≥ q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> , 1 ≤ m ≤ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> , where n and k are the code length and dimension, respectively. In particular, for one erasure, we show that our schemes can achieve optimal repair bandwidths whenever n=q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><i>l</i></sup> and r = q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> , for all 1 ≤ m ≤ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> . For two erasures, our schemes use the same bandwidth per erasure as the single erasure schemes, for <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> /m is a power of q, and for <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> = q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a</sup> , m=q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sup> -1 > 1 ( a ≥ b ≥ 1), and for m ≥ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> /2 when <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> is even and q is a power of two.
Read full abstract