Many-body QCD in leading high energy Regge asymptotics is described by the Balitsky–JIMWLK hierarchy of renormalization group equations for the x evolution of multi-point Wilson line correlators. These correlators are universal and ubiquitous in final states in deeply inelastic scattering and hadronic collisions. For instance, recently measured di-hadron correlations at forward rapidity in deuteron–gold collisions at the Relativistic Heavy Ion Collider (RHIC) are sensitive to four and six point correlators of Wilson lines in the small x color fields of the dense nuclear target. We evaluate these correlators numerically by solving the functional Langevin equation that describes the Balitsky–JIMWLK hierarchy. We compare the results to mean-field Gaussian and large Nc approximations used in previous phenomenological studies. We comment on the implications of our results for quantitative studies of multi-gluon final states in high energy QCD.