The Variational Quantum Eigensolver (VQE) algorithm, as applied to finding the ground state of a Hamiltonian, is particularly well-suited for deployment on noisy intermediate-scale quantum (NISQ) devices. Here, we utilize the VQE algorithm with a quantum circuit ansatz inspired by the Density Matrix Renormalization Group (DMRG) algorithm. To ameliorate the impact of realistic noise on the performance of the method, we employ zero-noise extrapolation. We find that, with realistic error rates, our DMRG–VQE hybrid algorithm delivers good results for strongly correlated systems. We illustrate our approach with the Heisenberg model on a Kagome lattice patch and demonstrate that DMRG–VQE hybrid methods can locate and faithfully represent the physics of the ground state of such systems. Moreover, the parameterized ansatz circuit used in this work is low depth and requires a reasonably small number of parameters, so it is efficient for NISQ devices.
Read full abstract