Acute kidney injury (AKI), with a high mortality and morbidity, is known as a risk factor for developing progressive chronic kidney disease (CKD). Targeting transition of AKI to CKD displays an excellent therapeutic potential. This study aims at investigating the role of CGS-21680, selective A2AR agonist, in deferring Cis-induced AKI-CKD transition. The AKI-CKD transition model was induced in C57/BL6 mice by repeated low doses of Cis (2.5 mg/kg i.p for 5 consecutive days in two cycles with a recovery phase of 16 days between two cycles). CGS-21680 was administered daily for 6 weeks (0.1 mg/kg, i.p). Urine, blood, and kidney were collected at three different time points to track the disease progression. CGS-21680 administration preserved kidney function and attenuated tubular damage as evidenced by hematoxylin-eosin (H&E) histopathology. CGS-21680 significantly restored oxidative status as reflected by reduced malondialdehyde (MDA) content and increased total antioxidant capacity (TAC). CGS-21680 showed anti-inflammatory effect as indicated by decreased TNF-α and iNOS. Additionally, CGS-21680 ameliorated endothelial dysfunction and enhanced renal vasodilation as evidenced by upregulation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) expression and down regulation of endothelin-1 (ET-1) and its receptor endothelin-A (ET-A) receptor expression. CGS-21680 also attenuated renal fibrosis as reflected by the reduction of percentage of fibrosis in Masson's trichome-stained renal sections and down regulation of transforming growth factor beta1 (TGF-β1) protein expression in IHC-stained renal sections. In conclusion, CGS-21680 could defer Cis-induced AKI-CKD transition via its vasodilatory, antioxidant, anti-inflammatory, and anti-fibrotic effects.
Read full abstract