Abstract
The mechanisms behind renal vasodilatation elicited by stimulation of β-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during β-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV7.1 channels was examined in a wire-myograph. The β-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV7 and BKCa channels affected the β-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV7 channels significantly decreased the β-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the β-adrenergic vasorelaxation. The β-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV7.1 channels. As opposed to rats, inhibition of KV7 channels did not affect the murine β-adrenergic vasorelaxation. Although inhibition and activation of KV7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected β-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV7 and BKCa channels significantly reduced the β-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.