This review provides a summary and assessment of research involving renal prostaglandins. Arachidonic acid released from phospholipids is converted by prostaglandin cyclo-oxygenase in the kidney to PGF2, PGF2alpha, PGD2, and, possibly, to PGI2 and thromboxane A2. Production of PGE2 and PGF2alpha is predominately but not exclusively in the medulla, whereas degradative enzymes are present in both cortex and medulla. Prostaglandins enter the tubular lumen by facilitated transport and are partially reabsorbed from the urine in the distal nephron. Urine prostaglandins probably reflect renal synthesis. PGE2 and endoperoxides stimulate and PGF2alpha and indomethacin inhibit renal renin synthesis. In response to ischemia, vasoconstriction, or angiotensin II the kidney increases prostaglandin synthesis to modulate renal vascular resistance. In conscious animals or man no role has been established for prostaglandins in the maintenance of basal renal blood flow or renal sodium excretion. PGE influences renal water excretion by inhibiting the action vasopressin. Despite conflicting data there is evidence that renal prostaglandins are involved either primarily or secondarily in many types of hypertension. Inhibitors of prostaglandin cyclooxygenase have been used with success in Bartter's syndrome. Conflicting results in many areas of investigation may be resolved by the use of more accurate and reliable assays, careful handling of samples, and the use of urine to further investigate renal prostaglandin synthesis.