γ-Glutamyltransferase (γ-GT) catalyzes the hydrolysis of glutathione, glutathione S-conjugates, and γ-substituted l-glutamate derivatives. Acivicin is an irreversible inhibitor of γ-GT that has been used to study the role of γ-GT in glutathione homeostasis and glutathione-dependent bioactivation reactions. The present studies were undertaken because of reported conflicting effects of acivicin on the nephrotoxicity of some haloalkenes that undergo glutathione-dependent bioactivation. The objective of this study was to test the hypothesis that acivicin may alter renal glutathione concentrations; acivicin-induced changes in renal glutathione concentrations may alter the susceptibility of the kidney to the nephrotoxic effects of haloalkenes. Hence, diurnal and acivicin-induced changes in renal and hepatic glutathione concentrations along with renal and hepatic γ-GT activities were investigated. The previously observed diurnal variations in hepatic glutathione concentrations in fed rats were confirmed, but no diurnal variations were observed in renal glutathione concentrations or in renal or hepatic γ-GT activities. Renal and hepatic glutathione concentrations and γ-GT activities were measured in tissue homogenates from rats given 0, 0.1, or 0.2 mmol acivicin/kg (i.p.) and killed 0, 2, 4, 8, 12, or 24 hr later. Renal glutathione concentrations were increased above control values in acivicin-treated rats, whereas acivicin had no effect on hepatic glutathione concentrations. Renal γ-GT activities decreased within 2 hr after giving acivicin and remained decreased for 24 hr. Acivicin had no effect on hepatic γ-GT activities, except at 24 hr after treatment when values in acivicin-treated rats were elevated compared with controls. Although the present studies do not afford an explanation of the mechanism whereby acivicin increases the nephrotoxicity of some haloalkenes, they do indicate that acivicin is not a reliable probe to investigate the role of γ-GT in haloalkene-induced nephrotoxicity.
Read full abstract