Layered two-dimensional (2D) graphitic carbon nitride (gCN)) doped with nonmetals has been extensively utilized as a photo-electrocatalyst. Herein, gCN doped with Oxygen was synthesized through a thermal polymerization process. The effect of various oxygen forerunners, namely citric acid (CA), oxalic acid (OX), and lactic acid (LA) on the photocatalytic ability of the gCN was analyzed. The proposed O-doped gCN samples basic characteristics were characterized by different analytical analyses. Indeed, the O-gCN has formed a sheet-like nature with a nanometre range, so often called a nanosheet. Superior photocatalytic performance was measured when the gCN was prepared by the CA as the O-precursor; 95% malachite green (MG) removal was attained within a short treatment time of 40min by adding a 20mg photocatalyst. The influences of different parameters of catalyst concentration, different precursors, and initial pH of MG degradation were also studied. The generation of active radicals played a major part in the degradation of the MG dye solution. These findings offer fundamental insight into utilizing the O-gCN for the remediation of textile effluents in water resources. The preparation of enormous metal-free catalysts via non-metal doping toward the environmental clean-up.
Read full abstract