ABSTRACTIn view of the low bract removal and high corn ear damage in the operation of the current peeling device, this work aimed to accurately measure the coefficients of friction (COFs) involved between peeling rollers and corn ears during the corn peeling. Consequently, the movement state of corn ear in a peeling device and the friction behavior involved were analyzed, and the mechanical model was established. Friction tests were conducted by using the modified tilting table, the modified direct shear apparatus, and the self‐built rolling friction apparatus. The value range and change rule of the COFs between corn ears and peeling rollers were obtained. Linear regression models were described for the COFs depending on moisture content. The results show that the coefficient of static friction (COSF) was 0.391–1.396, the coefficient of sliding friction (CODF) was 0.398–1.318, and the coefficient of rolling friction (CORF) was 0.119–0.377. All COFs were positively correlated with moisture content. Besides, the COFs of two rubber rollers were significantly larger than that of the steel roller. Among the two rubber rollers, the COFs were higher between the fish scale rubber roller and bare corn ears and were lower between the fish scale rubber roller and corn ears with bracts. This meant that the fish scale rubber roller was more likely to cause seed damage under the same conditions. Knowledge concerning these coefficients is believed to provide data support for the improvement and optimization of corn peeling devices.
Read full abstract