In this study, activated carbon (AC) and magnetic activated carbon (MAC) were prepared from Dalbergia sissoo sawdust for the removal of antibiotic Azithromycin (AZM) from aqueous solution. The effect of initial concentration, contact time, pH, adsorbent dosage, and the temperature were investigated for both the adsorbents. The optimum AZM concentration, contact time, pH and adsorbents dosages were found to be 80 mg/L, 120 min, 6 and 7 (pH, respectively, for AC and MAC), and 0.1 g (for both AC and MAC), respectively. The isothermal data of both sets of experiments correlated well with the Langmuir isotherm model, while the kinetic data with the pseudo-second-order model. The adsorption of AZM on both adsorbents was found to be favorable, which is evident in the values of the thermodynamic parameters (ΔH = −26.506 and −24.149 KJ/mol, ΔS = 91.812 and 81.991 J/mol K, respectively, for AC and MAC). To evaluate the effect of AC and MAC on the membrane parameters, a continuous stirred reactor was connected with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes. High % retention and improved permeate flux (around 90%) were obtained for AC/UF, AC/NF AC/RO, MAC/UF, MAC/NF, and MAC/RO treatments. The percent retention of AZM observed for AC/UF, AC/NF AC/RO was higher than MAC/UF, MAC/NF, and for MAC/RO hybrid processes due to greater surface area of AC than MAC.
Read full abstract