Detecting a microwave signal that is emitted or reflected by distant targets is a powerful tool in fundamental science and industrial technology. Solid-state spins provide an opportunity to realize quantum-enhanced remote sensing under ambient conditions. However, the weak interaction between the free-space signal and atomic size sensor limits the sensitivity. This hinders the realization of practical quantum remote sensing. Here, we demonstrate active microwave remote sensing with a diamond-based hybrid quantum receiver by combining electromagnetic field localization at nanoscale with quantum spin manipulation. A method of differential spin refocusing (DSR) is developed to overcome the challenge of reducing the impact of inhomogeneities in spin-signal interaction, while the strength of interaction is enhanced by more than 3 orders with nanostructure. It improves the coherent interaction time of quantum receiver by 30-fold, substantially enhancing the sensitivity and stability. By detecting the reflected microwave with picotesla sensitivity, diamond remote sensing monitors the real-time status of a centimeter-sized target at 2 m distance. Our method is general to various solid-state spins. The results will expand the applications of solid-state spin quantum sensors in areas ranging from medical imaging to resource survey.