Abstract
Thin clouds in Remote Sensing (RS) imagery can negatively impact subsequent applications. Current Deep Learning (DL) approaches often prioritize information recovery in cloud-covered areas but may not adequately preserve information in cloud-free regions, leading to color distortion, detail loss, and visual artifacts. This study proposes a Sparse Transformer-based Generative Adversarial Network (SpT-GAN) to solve these problems. First, a global enhancement feature extraction module is added to the generator’s top layer to enhance the model’s ability to preserve ground feature information in cloud-free areas. Then, the processed feature map is reconstructed using the sparse transformer-based encoder and decoder with an adaptive threshold filtering mechanism to ensure sparsity. This mechanism enables that the model preserves robust long-range modeling capabilities while disregarding irrelevant details. In addition, inverted residual Fourier transformation blocks are added at each level of the structure to filter redundant information and enhance the quality of the generated cloud-free images. Finally, a composite loss function is created to minimize error in the generated images, resulting in improved resolution and color fidelity. SpT-GAN achieves outstanding results in removing clouds both quantitatively and visually, with Structural Similarity Index (SSIM) values of 98.06% and 92.19% and Peak Signal-to-Noise Ratio (PSNR) values of 36.19 dB and 30.53 dB on the RICE1 and T-Cloud datasets, respectively. On the T-Cloud dataset, especially with more complex cloud components, the superior ability of SpT-GAN to restore ground details is more evident.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.