This paper proposes an optimal operational scheduling framework to be taken in use in the distribution management system (DMS) as the heart of smart active distribution networks (ADNs). The proposed algorithm targets to optimally control active elements of the network, distributed generations (DGs) and responsive loads (RLs), seeking to minimize the day-ahead total operation costs. The technical constraints of the components and the whole system are accommodated in the ac power flow fashion. As an innovative point, the DMS effectively utilizes the hourly network reconfiguration capabilities being realized by the deployment of remotely controlled switches (RCSs). Accordingly, besides the optimal schedule of active elements, the optimal topology of the network associated with each hour of the scheduling time horizon is determined as well. The effect of hourly reconfiguration on the capacity release of DGs and RLs is highlighted, which could be envisaged as a new trend in the reserve scheduling problem. Considering practical issues, the maximum daily switching actions of RCSs as well as switching costs are judicially included. The optimization procedure is formulated as a mixed-integer nonlinear problem and tackled with the genetic algorithm. To validate the satisfactory performance of the proposed framework, a 33-bus ADN is thoroughly interrogated.
Read full abstract