Abstract
This research investigates the simultaneous allocation of optimally sited and sized distributed generation (DG) units along with the capacitor banks for power loss minimization in smart automated distribution systems (ADSs). Moreover, network reconfiguration as one of the salient features of ADSs realized by remotely controlled switches (RCSs) is proposed to be incorporated in the simultaneous optimal siting and sizing process of DGs and capacitors. As the structure of the system would vary in the solution process, all of the buses are considered as the candidate bus to connect DGs and capacitors. Several scenarios have been considered for concurrent allocation of DGs, capacitors and also reconfiguration in loss minimization problem to interrogate the performance of the proposed method. Binary genetic algorithm (BGA) is employed to simultaneously identify the optimal site and size of DGs and capacitors as well as the system structure. The proposed algorithm is effectively implemented and then validated on the well-known IEEE 33-bus standard distribution system. Assessing the different scenarios reveals that incorporating network reconfiguration in combined allocation of DG and capacitor, would result in superior power loss minimization and also affects the optimal site and size of DGs and capacitors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have