Steering wheel angle is an important and essential parameter of the navigation control of autonomous wheeled vehicles. At present, the combination of rotary angle sensors and four-link mechanisms is the main sensing approach for steering wheel angle with high measurement accuracy, which is widely adopted in autonomous agriculture vehicles. However, in a complex and challenging farmland environment, there are a series of prominent problems such as complicated installation and debugging, spattered mud blocking the parallel four-bar mechanism, breakage of the sensor wire during operation, and separate calibrations for different vehicles. To avoid the above problems, a novel dynamic measurement method for steering wheel angle is presented based on vehicle attitude information and a non-contact attitude sensor. First, the working principle of the proposed measurement method and the effect of zero position error on measurement accuracy and path tracking are analyzed. Then, an optimization algorithm for zero position error of steering wheel angle is proposed. The experimental platform is assembled based on a 2ZG-6DM rice transplanter by software design and hardware modification. Finally, comparative tests are conducted to demonstrate the effectiveness and priority of the proposed dynamic sensing method. Experimental results show that the average absolute error of the straight path is 0.057° and the corresponding standard deviation of the error is 0.483°. The average absolute error of the turning path is 0.686° and the standard deviation of the error is 0.931°. This implies the proposed dynamic sensing method can accurately realize the collection of the steering wheel angle. Compared to the traditional measurement method, the proposed dynamic sensing method greatly improves the measurement reliability of the steering wheel angle and avoids complicated installation and debugging of different vehicles. The separate calibrations for different vehicles are not needed since the proposed measurement method is not dependent on the kinematic models of the vehicles. Given that the attitude sensor can be installed at a higher position on the wheel, sensor damage from mud blocking and the sensor wire breaking is also avoided.