As chip designs become increasingly complex, the potential for errors and defects in circuits inevitably rises, posing significant challenges to chip security and reliability. This study investigates the use of the SAT-based bounded model checking (BMC) for Propositional Projection Temporal Logic (PPTL) to verify Verilog chip designs at the register transfer level (RTL). To this end, we propose an algorithm to implement automated extraction of state transfer relations from AIGER netlist and construction of Kripke structure. Additionally, we employ PPTL with the full regular expressiveness to describe the circuit properties to be verified, especially the periodic repetitive properties. This is not possible with Linear Temporal Logic (LTL) and Computational Tree Logic (CTL). By combining the PPTL properties with finite system paths and transforming them into conjunctive normal forms (CNFs), we utilize an SAT solver for verification. Experimental results demonstrate that our verification tool, SAT-BMC4PPTL, achieves higher verification efficiency and comprehensiveness.
Read full abstract