A water-soluble triazole-linked quinoline conjugate of glucopyranose (L) has been synthesized and characterized, and its single-crystal X-ray diffraction (XRD) structure has been established. Binding of L toward different biologically relevant metal ions has been studied using fluorescence and absorption spectroscopy in HEPES buffer at pH 7.4. The conjugate L detects Zn2+ and Cd2+ with 30 ± 2 and 14 ± 1-fold fluorescence enhancement, respectively, but in the case of Hg2+, only a fluorescence quench was observed. The stoichiometry of the complex is 1:2 metal ion to the ligand in the case of Zn2+ and Cd2+ resulting in [Zn(L)2] and [Cd(L)2], and it is 1:1 in the case of Hg2+, as confirmed from their electrospray ionization mass spectrometry (ESIMS) spectra. Zn2+ shows greater exothermicity over Cd2+, whereas Hg2+ shows endothermicity , which supports the differences in their binding strength and the nature of the corresponding complex. L exhibits rod-shaped particles and upon complexation with Zn2+, it exhibits sphere-like morphological features in scanning electron microscopy (SEM) images. However, clustered aggregates are observed in Cd2+, whereas the [HgL] complex exhibits small fused spherical structures, and therefore the signature of these ions is seen in microscopy images. The computational studies revealed that the syn-[Zn(L)2] complex is stabilized by 9.7 kcal mol–1 more than that in the case of anti-[Zn(L)2] owing to the formation of hydrogen bonds between the two glucosyl moieties within the syn-complex. Among the anions studied, [Zn(L)2] is sensitive and selective toward the phosphate ion (H2PO4–) with a minimum detection limit of 16 ± 2 ppb. Similarly, the [HgL] can act as a secondary sensor for CN– while also exhibiting reversibility. Based on the input–output characteristics, INHIBIT logic gate was built in the case of Zn2+ vs H2PO4– and IMPLICATION logic gate was built in the case of Hg2+ vs CN–.
Read full abstract