BackgroundWe investigated the effect of propofol on the tissue plasminogen activator (tPA) release in developing hippocampal neurons, and explored the effects of exogenous tPA on the propofol-induced neuron apoptosis.MethodsPrimary hippocampal neurons isolated from neonatal Sprague-Dawley rats were exposed to propofol (20, 50, and 100 μM) for 6 h either one time or three times. Finally, neurons were pretreated with exogenous tPA (5 µg/ml), followed by propofol exposure (100 μM, 6 h). The neuron apoptosis was detected by terminal transferase deoxyuridine triphosphate-biotin nick-end labeling (TUNEL) and the protein expression of cleaved caspase-3 (Cl-Csp3) was analyzed by western blot, the tPA in media was tested by enzyme-linked immunosorbent assay.ResultsPropofol exposure significantly increased the number of TUNEL-positive neurons and Cl-Csp3 expression in developing hippocampal neurons. Propofol decreased tPA level in the media of developing hippocampal neurons. The neuron appotosis induced by propofol was attenuated by pretreatment of tPA.ConclusionPropofol exposure decreased tPA release in developing hippocampal neurons. The addition of tPA could partially reverse the apoptotic effect of propofol.
Read full abstract