In recent years, with the development of the nanomaterials discipline, many new pesticide drug-carrying systems-such as pesticide nano-metal particles, nano-metal oxides, and other drug-carrying materials-had been developed and applied to pesticide formulations. Although these new drug-loading systems are relatively friendly to the environment, the direct exposure of many metal nanoparticles to the environment will inevitably lead to potential effects. In response to these problems, organic nanomaterials have been rapidly developed due to their high-quality biodegradation and biocompatibility. Most of these organic nanomaterials were mainly polysaccharide materials, such as chitosan, carboxymethyl chitosan, sodium alginate, β-cyclodextrin, cellulose, starch, guar gum, etc. Some of these materials could be used to carry inorganic materials to develop a temperature- or pH-sensitive pesticide drug delivery system. Herein, the pesticide drug-carrying system developed based on polysaccharide materials, such as chitosan, was referred to as the pesticide polymer drug-carrying system based on polysaccharide materials. This kind of drug-loading system could be used to protect the pesticide molecules from harsh environments, such as pH, light, temperature, etc., and was used to develop the function of a sustained release, targeted release of pesticides in the intestine of insects, and achieve the goal of precise application, reduction, and efficiency of pesticides. In this review, the recent progress in the field of polysaccharide-based polymer drug delivery systems for pesticides has been discussed, and suggestions for future development were proposed based on the current situation.