The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.
Read full abstract