The growing demand aiming non-invasive diagnosis techniques applications has become an emerging field for developing more efficient bioprobes working in the near infrared (NIR) biological windows. In this work, we propose Er3+/Yb3+ co-doped yttrium niobate as a multifunctional material synthesized via sol-gel method. We study its NIR emission under UV excitation (down-shifting) and NIR-to-visible upconversion (UC) emission and exploit this material as a luminescent thermometer. X-ray diffraction analysis points out the formation of cubic Y3NbO7 crystalline phase after annealing at 1100 °C. Intense and narrow 1.5 μm emission (FWHM ∼24 nm) with Er3+4I13/2 lifetime value of ca. 5.5 ms are observed under excitation in the host absorption band (276 nm), due to down-shifting process. Down-shifting and upconversion quantum yields (QY) with excitation at 980 nm were reported for the first time for Y3NbO7 material with values of ca. 18% and ca. 0.0020% in the NIR and visible ranges, respectively. Y3NbO7 is a luminescent primary thermometer with maximum relative thermal sensitivity of 1.31 ± 0.06% K−1, temperature uncertainty of 0.31 K, and repeatability of 99.6%. Furthermore, the relatively high QY values in NIR and UC emission, comparable to fluorides and higher than other oxides, make Er3+/Yb3+ co-doped yttrium niobate an interesting multifunctional probe aiming for biological applications.