Measurement of drainage relative permeability by the centrifuge method was first introduced by Hagoort (SPE J. 29(3):139–150, 1980). It has been shown that capillary end effects can cause error in the measurement of relative permeability if a minimum rotational speed is not honoured. To determine the minimum rotational speed that makes the capillary end effect negligible, ω min, we propose that the value of capillary-gravity number, N cg, should be of the order of 10−2 or smaller. This conclusion is based on the use a Forward–backward scheme consisting of a forward numerical simulator developed for centrifuge experiments and applying Hagoort’s method as a backward model. The article presents the use of this Forward–backward scheme as a powerful tool for error analysis such as determining the impact of capillary end effects. By using this loop, we first determine ω min for specific core and fluid properties. Later, we generalize the ω min calculations by using the definition of N cg as a “rule of thumb” for designing relative permeability experiments by centrifuge method. We also demonstrate another use of this loop for controlling the quality of the experimental data.