Age-related hearing loss is the most common form of permanent hearing loss that is associated with various health traits, including Alzheimer's disease, cognitive decline, and depression. The present study aims to identify genetic comorbidities of age-related hearing loss. Past genome-wide association studies identified multiple genomic loci involved in common adult-onset health traits. Polygenic risk scores (PRS) could summarize the polygenic inheritance and quantify the genetic susceptibility of complex traits independent of trait expression. The present study conducted a PRS-based association analysis of age-related hearing difficulty in the UK Biobank sample (N = 425,240), followed by a replication analysis using hearing thresholds (HTs) and distortion-product otoacoustic emissions (DPOAEs) in 242 young adults with self-reported normal hearing. We hypothesized that young adults with genetic comorbidities associated with age-related hearing difficulty would exhibit subclinical decline in HTs and DPOAEs in both ears. A total of 111,243 participants reported age-related hearing difficulty in the UK Biobank sample (> 40years). The PRS models were derived from the polygenic risk score catalog to obtain 2627 PRS predictors across the health spectrum. HTs (0.25-16kHz) and DPOAEs (1-16kHz, L1/L2 = 65/55dB SPL, F2/F1 = 1.22) were measured on 242 young adults. Saliva-derived DNA samples were subjected to low-pass whole genome sequencing, followed by genome-wide imputation and PRS calculation. The logistic regression analyses were performed to identify PRS predictors of age-related hearing difficulty in the UK Biobank cohort. The linear mixed model analyses were performed to identify PRS predictors of HTs and DPOAEs. The PRS-based association analysis identified 977 PRS predictors across the health spectrum associated with age-related hearing difficulty. Hearing difficulty and hearing aid use PRS predictors revealed the strongest association with the age-related hearing difficulty phenotype. Youth with a higher genetic predisposition to hearing difficulty revealed a subclinical elevation in HTs and a decline in DPOAEs in both ears. PRS predictors associated with age-related hearing difficulty were enriched for mental health, lifestyle, metabolic, sleep, reproductive, digestive, respiratory, hematopoietic, and immune traits. Fifty PRS predictors belonging to various trait categories were replicated for HTs and DPOAEs in both ears. The study identified genetic comorbidities associated with age-related hearing loss across the health spectrum. Youth with a high genetic predisposition to age-related hearing difficulty and other related complex traits could exhibit sub-clinical decline in HTs and DPOAEs decades before clinically meaningful age-related hearing loss is observed. We posit that effective communication of genetic risk, promoting a healthy lifestyle, and reducing exposure to environmental risk factors at younger ages could help prevent or delay the onset of age-related hearing difficulty at older ages.