Diffuse solar irradiation (HD) data are essential for the design and management of photovoltaic solar systems, biosphere-atmosphere modeling, and other applications. However, HD observations are scarce in several locations, especially in tropical regions. Employing hourly diffuse solar irradiation (HDh) and global solar irradiation (HGh) data collected between 2002─2003 and 2007─2008 in Alagoas State, Northeast Brazil, this study assesses various modeling techniques. Empirical models, including third-degree polynomial, logistic, sigmoidal, and rational functions, were compared with AI methods such as artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Additionally, it explores how solarimetric and meteorological variables impact the performance of these models. The empirical models showed similar performance in estimating KDh(=HDh/HGh) (r2 > 0.726, modified Willmott – dm > 0.704, and RMSD < 0.103), with the third-degree polynomial model standing out. The empirical models had difficulty estimating KDh for hourly atmospheric transmittance (KTh) > 0.80, which indicated that they are not able to adequately simulate clear sky conditions, mostly due to surface reflections and clouds at the end of the day. ANN (r2 > 0.718, dm > 0.702, and RMSD < 0.105) showed better precision and accuracy of estimates for a greater number of schemes in relation to SVM and ANFIS (r2 > 0.704, dm > 0.699, RMSD < 0.108) and to empirical models. AI methods were able to represent the complexity of these conditions, with overall performance in estimating KDh superior or equivalent to empirical models. This study underscores the significance of exploring diverse methods for HD estimation, demonstrating promising potential for accurate and reliable estimation of hourly diffuse solar irradiation.