The surging prevalence rates of ESBL-producing Escherichia coli (ESBL-Ec) pose a serious threat to public health. To date, most research on drug-resistant bacteria and genes has focused on livestock and poultry breeding areas, hospital clinical areas, natural water environments, and wastewater treatment plants. However, few studies have been conducted on drug-resistant bacteria in vegetable cultivation. In this study, a total of vegetable farmers (n = 59) from six villages were surveyed. Fecal samples were collected from vegetable farmers; we also collected environmental samples, including river water, well water, soil, river sediment, vegetable surface swabs, and fish intestinal tracts. The ESBL-Ec intestinal colonization rate in vegetable farmers was 76.27%. PFGE results indicated two patterns of ESBL-Ec transmission within the vegetable cultivation area: among vegetable farmers, and among river water, river sediments, and vegetable farmers. Based on the phylogenetic analysis, three transmission patterns of ESBL-Ec outside the vegetable cultivation area were inferred: human-human, human-animal-human, and human-animal-environment. Twelve of the isolates carried closely related or identical IncF plasmids carrying blaCTX-M. Whole genome sequencing (WGS) analysis showed that ST569-B2-O134:H31 and ST38-D-O50:H30 were associated with high disease risk. We assessed the health risks of the farming population and provided a reference basis for public health surveillance and environmental management by monitoring the prevalence and transmission of ESBL-Ec in vegetable areas.
Read full abstract